手机浏览器扫描二维码访问
“加密时明文按照128位为单位进行分组,每组包含16个字节,按照从上到下、从左到右的顺序排列成一个4×4的矩阵,称为明文矩阵。AES的加密过程在一个大小同样为4×4的矩阵中进行,称为状态矩阵,状态矩阵的初始值为明文矩阵的值。每一轮加密结束后,状态矩阵的值变化一次。轮函数执行结束后,状态矩阵的值即为密文的值,从状态矩阵得到密文矩阵,依次提取密文矩阵的值得到128位的密文。
“以128位密钥为例,密钥长度为16个字节,也用4×4的矩阵表示,顺序也是从上到下、从左到右。AES通过密钥编排函数把密钥矩阵扩展成一个包含44个字的密钥序列,其中的前4个字为原始密钥用于初始加密,后面的40个字用于10轮加密,每轮使用其中的4个字。密钥递归产生规则如下:
“如果i不是4的倍数,那么由等式w[i]=w[i-4]⊕w[i-1]确定;
“如果i是4的倍数,那么由等式w[i]=w[i-4]⊕T(w[i-1])确定;
“加密的第1轮到第9轮的轮函数一样,包括4个操作:字节代换、行位移、列混合和轮密钥加。最后一轮迭代不执行列混合。另外,在第一轮迭代之前,先将明文和原始密钥进行一次异或加密操作。
“解密过程仍为10轮,每一轮的操作是加密操作的逆操作。由于AES的4个轮操作都是可逆的,因此,解密操作的一轮就是顺序执行逆行移位、逆字节代换、轮密钥加和逆列混合。同加密操作类似,最后一轮不执行逆列混合,在第1轮解密之前,要执行1次密钥加操作。
AES加密的轮函数操作包括字节代换SubBytes、行位移ShiftRows、列混合MixColumns、轮密钥加AddRoundKey等等,每一个的步骤都是紧密相连。”
“……”
“至于非对称加密算法RSA,则是1977年三位数学家Rivest、Shamir和Adleman设计了一种算法,可以实现非对称加密,使用非对称加密算法需要生成公钥和私钥,使用公钥加密,使用私钥解密。”
“……”
王东来说的滔滔不绝,简单清楚又明了,一看就知道是真的了解这些内容。
韩华在心里其实也逐渐相信起这篇论文是王东来自己写出来的,不过还是挑了几个问题问了起来,“什么是互质关系?”
这个问题很简单,只要看过书都能知道,但是根据课程,王东来还没有学过。
“质数(primenumber)又称素数,有无限个。一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数;否则称为合数,如果两个正整数,除了1以外,没有其他公因子,我们就称这两个数是互质关系。互质关系不要求两个数都是质数,合数也可以和一个质数构成互质关系。”
王东来迅速地回答出来。
韩华紧接着问道:“那你再说说欧拉函数。”
“欧拉函数是指对正整数n,欧拉函数是小于n的正整数中与n互质的数的数目,用φ(n)表示。”
“例如φ(8)=4,因为1357均和8互质。”
“若n是质数p的k次幂,除了p的倍数外,其他数都跟n互质,则数学公式为……”
“若m,n互质,则数学公式为……”
“当n为奇数时,则数学公式为……”
“当n为质数时,则数学公式为……”
对答如流,完全不像是一个刚入学的大一新生,其流利程度在韩华看来,已经不弱于一些大三学生了。
在办公室里面的三位学长,这个时候也停下了手上的动作,认真地听着王东来和鹅韩华的一问一答。
“模反元素。”
“如果两个正整数a和n互质,那么一定可以找到整数b,使得ab-1被n整除,或者说ab被n除的余数是1。这时,b就叫做a的‘模反元素’。”
“比如3和11互质,那么3的模反元素就是4,因为(3×4)-1可以被11整除。显然,模反元素不止一个,4加减11的整数倍都是3的模反元素{…,-18,-7,4,15,26,…},即如果b是a的模反元素,则b+kn都是a的模反元素。”
“那欧拉定理呢?”
“欧拉定理是一个关于同余的性质。欧拉定理表明,若n,a为正整数,且n,a互质,则有a^φ(n)≡1(modn)。”
“假设正整数a与质数p互质,因为φ(p)=p-1,则欧拉定理可以写成a^(p-1)≡1(modp)。”
等王东来说完之后,韩华下意识地鼓起掌来。
“好好好,我确实没想到你会给我这么大的惊喜。”
“先前,你的论文质量很高,我以为不是你写的,所以才这么问你,想看看你究竟懂不懂,倒是没想到你给了我这么大的一个惊喜。”
“你的论文没有问题,论证的过程也很完美,只不过就是有些排版上的小问题以及引用文献时的错误,这些都是小问题,稍微改一下就是了。”
“只不过,你知道你这篇论文真正的价值吗?”
韩华说完之后,便静静地看着王东来,等着他的回答。
我靠古法药香养夫郎 骇档案:死亡循环 草根石布衣 我有一辆美食餐车 我的拟态是山海经全员[星际] 随身英雄杀 我在美漫当二线英雄 魔法高材生 超级上门医婿 嫁给男神后才发现他…… 岁岁常安宁 世家的天下:魏晋豪门与皇帝的争权之路 让你上恋综,嘉宾全翻车了? 超级医婿 灵魂引渡人 大驸马 四合院来的娇小 姐[年代] LOL:什么叫自爆型打野啊? 长姐觉醒后[九零] 废婿崛起
关于林家有女整治家风种田宅斗大女主无金手指无cp脾气暴躁一言不合就咬人村中有四霸恶狗公羊大鹅和林三丫林瑶睁开眼就目睹了家徒四壁,那叫一个寒酸。再睁眼又目睹了泼妇骂街,得不想动嘴打一顿就好了。从此林家三丫性情大变一言不合就开撕。重男轻女的偏心祖母,心思深沉祖父,独木难支的后娘,软弱无能的亲爹。上有两个任人欺辱的姐姐,下有两个后娘生的弟妹,更有恶毒叔伯一窝好吃懒做筛子精,真真是极品凑了一堆。从此...
林风穿越到了一个诡异的世界,成了凌虚观的一名小道士。但这世界原本的规则早已破碎,破碎的仙道流落到各种生物手中,滋生出无数邪仙异教。林风在机缘巧合下,被疯子师父血肉附体,还换上了一颗恶鬼的心脏,变成一个半人半鬼的怪物。红月,血雨,尸林倒挂,白蜡油翻滚中人祭,万人朝拜的黄金树,连绵不断的尸垛,不死癫狂的难民,佛世净土中...
关于足坛之开局点满任意球什么?竟然把任意球点满了,我明明点的是传球呀!!!沦为皇马队饮水机管理员的江浩,在一场国家德比最后时刻登场,以两粒直接任意球破门方式开始传奇人生。弗洛伦蒂诺我这辈子最大的错误,便是把江浩卖给巴伦西亚。齐达内我很幸运,江浩没有出生在我们那个年代。C罗江浩是历史最佳,我不如他。贝尔难以想象,我竟然会在速度上被人碾压。拉莫斯这家伙不是惧怕对抗吗,怎么铲不动?梅西...
关于异能学校之遇上恋爱脑大佬选修课总是遇到女主被迫恋爱脑的魔修大佬vs表面小白实则腹黑爱玩的欧皇新生!简介一高考后准备报考的褚星禾,某天突然接到电话请问是褚星禾同学吗?这里是关山岭职业技术专修学院考生你好,这里是玄天宗职业技法大学招生办褚同学你好,这里是魔神机械设计学院招生办这不妥妥的诈骗电话吗?什么妖魔鬼怪的野鸡学校都打电话过来招生。听听这名字,褚星禾能信吗?当然不能!!!然而她还是被迫入学了。没人告诉她还有入学考试,怎么还有人上学带刀枪剑炮水晶球啊?这都算了!为什么入学考试是闯鬼屋?躲丧尸?跳大神越来越离谱了,得亏褚星禾从小见惯妖魔鬼怪,不然真得被创飞。简介二通识实践课就跟着魔修大佬一起选!结课巨快!为什么?他每个副本都得杀妻证道,主打就是一个大道无情!你进去老公还没喊出来,人就噶掉了!嘎嘎快。还有这种好事?褚星禾第一个冲了!然而她遇到的怎么不太一样?谁能来告诉她,为什么这个魔修大佬只会哭唧唧找老婆,甩都甩不开?...
关于万里追狼白龙,它不是龙,也不是马,它是一条白色的狗,是60年代华北地区某村的一条狗王。在那个狼灾泛滥的时代,白龙在主人福哥的照料下,历经坎坷,从一条小狗崽成长为一条勇猛的狗王,并和村里的狗一起担负起守卫村庄的责任。由此与村庄周围的狼群结仇,几番恶战,斗智斗勇。。。...
关于人在木叶生性纯良的我被系统逼上了邪路穿越火影世界,开局觉醒系统!呦,生性纯良的宿主呦!作为一个正常的男人,你怎么能眼睁睁的看着宇智波富岳那个混蛋老牛吃嫩草!一向宇智波美琴表白,俘获佳人芳心奖励S级忍术一门(随机)二生性纯良的宿主呦!只有愚蠢的人才会做选择,强夺一血奖励写轮眼三门忍术熟练度提升一级(随即)望着远处自己下属那纯真的神情,藤原哲也看着水中自己的倒影陷入了沉思。这一血,自己究竟是要,还是不要?...